Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int Heart J ; 65(1): 4-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296578

RESUMO

Neoatherosclerosis is a major cause of stent failure after percutaneous coronary intervention. Metabolism such as hyperuricemia is associated with in-stent restenosis (ISR). However, the association between serum uric acid (sUA) levels and in-stent neoatherosclerosis (ISNA) has never been validated.A total of 216 patients with 220 ISR lesions who had undergone optical coherence tomography (OCT) of culprit stents were included in this study. According to their sUA levels, eligible patients were divided into two groups [normal-sUA group: sUA < 7 mg/dL, n = 126, and high-sUA group: sUA ≥ 7 mg/dL, n = 90]. OCT findings were analyzed and compared between the normal- and high-sUA groups.The incidence of ISNA (63.0% versus 43.0%, P = 0.004) was significantly higher in the high-sUA group than in the normal-sUA group. Lipid plaques (66.3% versus 43.0%, P < 0.001) and thin-cap fibroatheroma (38.0% versus 18.0%, P = 0.001) were observed more frequently in the restenotic tissue structure in patients in the high-sUA group than in those in the normal-sUA group. Meanwhile, univariate (OR: 1.208, 95% CI: 1.037-1.407; P = 0.015) and multivariate (OR: 1.254, 95% CI: 1.048-1.501; P = 0.013) logistic regression analyses indicated that sUA levels were an independent risk factor for ISNA after adjusting for relevant risk factors.The high-sUA levels were an independent risk factor for the occurrence of neoatherosclerosis in patients with ISR via OCT.


Assuntos
Aterosclerose , Reestenose Coronária , Intervenção Coronária Percutânea , Placa Aterosclerótica , Humanos , Ácido Úrico , Reestenose Coronária/etiologia , Reestenose Coronária/complicações , Placa Aterosclerótica/complicações , Stents/efeitos adversos , Aterosclerose/etiologia , Tomografia de Coerência Óptica/métodos , Intervenção Coronária Percutânea/efeitos adversos , Constrição Patológica/patologia , Vasos Coronários/patologia
2.
Int J Cardiovasc Imaging ; 39(12): 2609-2619, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804387

RESUMO

Neoatherosclerosis (NA) is a significant contributor to late stent failure; however, predictors of late in-stent restenosis (ISR) with NA have not been systematically reported. This study aimed to identify predictors of NA incidence and plaque vulnerability in patients with late ISR and the role of low-density lipoprotein cholesterol (LDL-C) levels in this process. A total of 216 patients with 216 lesions who underwent optical coherence tomography (OCT) before interventional procedure for late drug-eluting stent ISR were enrolled and divided into NA and non-NA groups based on OCT findings. Results showed that higher LDL-C levels were associated with NA, thin-cap fibroatheroma (TCFA), intimal disruption, plaque erosion, and thrombosis. Multivariate regression analysis revealed that the LDL-C level was an independent risk factor for NA and TCFA. The LDL-C levels exhibited a significant predictive value for NA and TCFA, surpassing other factors such as stent age and other lipid types. In conclusion, a high LDL-C level is an independent predictor of NA incidence and plaque vulnerability in patients with late ISR.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Reestenose Coronária , Stents Farmacológicos , Doenças das Valvas Cardíacas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Stents Farmacológicos/efeitos adversos , LDL-Colesterol , Tomografia de Coerência Óptica/métodos , Neointima , Valor Preditivo dos Testes , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/etiologia , Reestenose Coronária/patologia , Aterosclerose/patologia , Constrição Patológica/complicações , Doenças das Valvas Cardíacas/complicações , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/complicações
3.
Shock ; 60(4): 573-584, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832154

RESUMO

ABSTRACT: Cardiac macrophages with different polarization phenotypes regulate ventricular remodeling and neovascularization after myocardial infarction (MI). Annexin A2 (ANXA2) promotes macrophage polarization to the repair phenotype and regulates neovascularization. However, whether ANXA2 plays any role in post-MI remodeling and its underlying mechanism remains obscure. In this study, we observed that expression levels of ANXA2 were dynamically altered in mouse hearts upon MI and peaked on the second day post-MI. Using adeno-associated virus vector-mediated overexpression or silencing of ANXA2 in the heart, we also found that elevation of ANXA2 in the infarcted myocardium significantly improved cardiac function, reduced cardiac fibrosis, and promoted peri-infarct angiogenesis, compared with controls. By contrast, reduction of cardiac ANXA2 exhibited opposite effects. Furthermore, using in vitro coculture system, we found that ANXA2-engineered macrophages promoted cardiac microvascular endothelial cell (CMEC) proliferation, migration, and neovascularization. Mechanistically, we identified that ANXA2 interacted with yes-associated protein (YAP) in macrophages and skewed them toward pro-angiogenic phenotype by inhibiting YAP activity. In addition, ANXA2 directly interacted with integrin ß3 in CMECs and enhanced their growth, migration, and tubule formation. Our results indicate that increased expression of ANXA2 could confer protection against MI-induced injury by promoting neovascularization in the infarcted area, partly through the inhibition of YAP in macrophages and activation of integrin ß3 in endothelial cells. Our study provides new therapeutic strategies for the treatment of MI injury.


Assuntos
Anexina A2 , Traumatismos Cardíacos , Infarto do Miocárdio , Animais , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Células Endoteliais/metabolismo , Traumatismos Cardíacos/metabolismo , Integrina beta3 , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo
4.
Theranostics ; 13(7): 2192-2209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153746

RESUMO

M2 macrophage-mediated tissue repair plays an important role in acute myocardial infarction (AMI). Additionally, VSIG4, which is mainly expressed on tissue-resident and M2 macrophages, is crucial for the regulation of immune homeostasis; however, its effects on AMI remain unknown. In this study, we aimed to investigate the functional significance of VSIG4 in AMI using VSIG4 knockout and adoptive bone marrow transfer chimeric models. We also determined the function of cardiac fibroblasts (CFs) through gain- or loss-of-function experiments. We showed that VSIG4 promotes scar formation and orchestrates the myocardial inflammatory response after AMI, while also promoting TGF-ß1 and IL-10. Moreover, we revealed that hypoxia promotes VSIG4 expression in cultured bone marrow M2 macrophages, ultimately leading to the conversion of CFs to myofibroblasts. Our results reveal a crucial role for VSIG4 in the process of AMI in mice and provide a potential immunomodulatory therapeutic avenue for fibrosis repair after AMI.


Assuntos
Infarto do Miocárdio , Animais , Camundongos , Fibrose , Hipóxia/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/patologia
5.
Ann Transl Med ; 9(14): 1162, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430603

RESUMO

BACKGROUND: The in-hospital mortality of patients with ST-segment elevation myocardial infarction (STEMI) increases to more than 50% following a cardiogenic shock (CS) event. This study highlights the need to consider the risk of delayed calculation in developing in-hospital CS risk models. This report compared the performances of multiple machine learning models and established a late-CS risk nomogram for STEMI patients. METHODS: This study used logistic regression (LR) models, least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and tree-based ensemble machine learning models [light gradient boosting machine (LightGBM) and extreme gradient boosting (XGBoost)] to predict CS risk in STEMI patients. The models were developed based on 1,598 and 684 STEMI patients in the training and test datasets, respectively. The models were compared based on accuracy, the area under the curve (AUC), recall, precision, and Gini score, and the optimal model was used to develop a late CS risk nomogram. Discrimination, calibration, and the clinical usefulness of the predictive model were assessed using C-index, calibration plotd, and decision curve analyses. RESULTS: A total of 2282 STEMI patients recruited between January 1, 2016 and May 31, 2020, were included in the complete dataset. The linear models built using LASSO and LR showed the highest overall predictive power, with an average accuracy over 0.93 and an AUC above 0.82. With a C-index of 0.811 [95% confidence interval (CI): 0.769-0.853], the LASSO nomogram showed good differentiation and proper calibration. In internal validation tests, a high C-index value of 0.821 was achieved. Decision curve analysis (DCA) and clinical impact curve (CIC) examination showed that compared with the previous score-based models, the LASSO model showed superior clinical relevance. CONCLUSIONS: In this study, five machine learning methods were developed for in-hospital CS prediction. The LASSO model showed the best predictive performance. This nomogram could provide an accurate prognostic prediction for CS risk in patients with STEMI.

7.
Comput Math Methods Med ; 2021: 7252280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285708

RESUMO

Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We aimed to evaluate the performance of different machine learning models for the prediction of 1-year mortality in STEMI patients with hyperuricemia. We compared five machine learning models (logistic regression, k-nearest neighbor, CatBoost, random forest, and XGBoost) with the traditional global (GRACE) risk score for acute coronary event registrations. We registered patients aged >18 years diagnosed with STEMI and hyperuricemia at the Affiliated Hospital of Zunyi Medical University between January 2016 and January 2020. Overall, 656 patients were enrolled (average age, 62.5 ± 13.6 years; 83.6%, male). All patients underwent emergency percutaneous coronary intervention. We evaluated the performance of five machine learning classifiers and the GRACE risk model in predicting 1-year mortality. The area under the curve (AUC) of the six models, including the GRACE risk model, ranged from 0.75 to 0.88. Among all the models, CatBoost had the highest predictive accuracy (0.89), AUC (0.87), precision (0.84), and F1 value (0.44). After hybrid sampling technique optimization, CatBoost had the highest accuracy (0.96), AUC (0.99), precision (0.95), and F1 value (0.97). Machine learning algorithms, especially the CatBoost model, can accurately predict the mortality associated with STEMI complicated by hyperuricemia after a 1-year follow-up.


Assuntos
Hiperuricemia/complicações , Aprendizado de Máquina , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Idoso , Algoritmos , Área Sob a Curva , China/epidemiologia , Biologia Computacional , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea , Prognóstico , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia
8.
Theranostics ; 11(13): 6315-6333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995660

RESUMO

Objective: This study aimed to explore the role of circular RNAs (circRNAs) in M2 macrophage (M2M)-derived small extracellular vesicles (SEVs) in myocardial fibrosis development. Methods: The regulatory role of M2M-derived extracellular vesicles (EVs) was evaluated in a mouse model of acute myocardial infarction. Immunofluorescence, quantitative real-time PCR (RT-qPCR), nanoparticle tracking analysis, Western blot analysis and electron microscopy were used to identify macrophages, large extracellular vesicles (LEVs) and SEVs. The circRNA expression profiles of M0 macrophages (M0Ms) and M2Ms were determined by microarray analysis. Bioinformatic analysis, cell coculture and cell proliferation assays were performed to investigate the expression, function, and regulatory mechanisms of circUbe3a in vitro. qPCR, RNA immunoprecipitation (RIP), dual-luciferase reporter assays, RNA fluorescence in situ hybridization (RNA-FISH), Western blot analysis and a series of rescue experiments were used to verify the correlation among circUbe3a, miR-138-5p and RhoC. Results: CircUbe3a from M2M-derived SEVs triggered functional changes in cardiac fibroblasts (CFs). CircUbe3a was synthesized and loaded into SEVs during increased M2M infiltration after myocardial infarction. The fusion of the released SEVs with the plasma membrane likely caused the release of circUbe3a into the cytosol of CFs. Silencing or overexpressing circUbe3a altered CF proliferation, migration, and phenotypic transformation in vitro. We confirmed that circUbe3a plays a crucial role in enhancing functional changes in CFs by sponging miR-138-5p and then translationally repressing RhoC in vitro. In vivo, the addition of M2M-derived SEVs or overexpression of circUbe3a significantly exacerbated myocardial fibrosis after acute myocardial infarction, and these effects were partially abolished by circUbe3a-specific shRNA. Conclusions: Our findings suggest that M2M-derived circUbe3a-containing SEVs promote the proliferation, migration, and phenotypic transformation of CFs by directly targeting the miR-138-5p/RhoC axis, which may also exacerbate myocardial fibrosis after acute myocardial infarction.


Assuntos
Vesículas Extracelulares/química , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , RNA Circular/genética , Animais , Divisão Celular , Movimento Celular , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Remodelação Ventricular , Proteína de Ligação a GTP rhoC/fisiologia
9.
Oxid Med Cell Longev ; 2020: 8418407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733638

RESUMO

Exosomes play critical roles in mediating cell-to-cell communication by delivering noncoding RNAs (including miRNAs, lncRNAs, and circRNAs). Our previous study found that cardiomyocytes (CMs) subjected to hypoxia released circHIPK3-rich exosomes to regulate oxidative stress damage in cardiac endothelial cells. However, the role of exosomes in regulating angiogenesis after myocardial infarction (MI) remains unknown. The aim of this study was to establish the effects of exosomes derived from hypoxia-induced CMs on the migration and angiogenic tube formation of cardiac endothelial cells. Here, we reported that hypoxic exosomes (HPC-exos) can effectively reduce the infarct area and promote angiogenesis in the border surrounding the infarcted area. HPC-exos can also promote cardiac endothelial cell migration, proliferation, and tube formation in vitro. However, these effects were weakened after silencing circHIPK3 in hypoxia-induced CMs. We further verified that silencing and overexpressing circHIPK3 changed cardiac endothelial cell proliferation, migration, and tube formation in vitro by regulating the miR-29a expression. In addition, exosomal circHIPK3 derived from hypoxia-induced CMs first led to increased VEGFA expression by inhibiting miR-29a activity and then promoted accelerated cell cycle progression and proliferation in cardiac endothelial cells. Overexpression of miR-29a mimicked the effect of silencing circHIPK3 on cardiac endothelial cell activity in vitro. Thus, our study provides a novel mechanism by which exosomal circRNAs are involved in the communication between CMs and cardiac endothelial cells.


Assuntos
Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Circular/genética , Animais , Hipóxia Celular/fisiologia , Vasos Coronários/metabolismo , Exossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Transdução de Sinais , Transfecção
10.
Biomed Res Int ; 2020: 8926120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733961

RESUMO

Quantitative real-time PCR (qPCR) has become a widely used approach to analyze the expression level of selected genes. However, owing to variations in cell types and drug treatments, a suitable reference gene should be selected according to special experimental design. In this study, we investigated the expression level of ten candidate reference genes in hepatoma carcinoma cell (HepG2) and human hepatocyte cell line (L02) treated with ethanol (EtOH), hydrogen peroxide (H2O2), acetaminophen (APAP), and carbon tetrachloride (CCl4), respectively. To analyze raw cycle threshold values (Cp values) from qPCR run, three reference gene validation programs, including Bestkeeper, geNorm, and NormFinder, were used to evaluate the stability of ten candidate reference genes. The results showed that TATA-box binding protein (TBP) and tubulin beta 2a (TUBB2a) presented the highest stability for normalization under different treatments and were regarded as the most suitable reference genes of HepG2 and L02. In addition, this study not only identified the most stable reference genes of each treatment, but also suggested that ß-actin (ACTB), glyceraldehade-3-phosphate dehydrogenase (GAPDH), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), and beta-2 microglobulin (B2M) were the least stable reference genes in HepG2 and L02. This work was the first report to systematically explore the stability of reference genes in injured models of HepG2 and L02.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fígado/lesões , Modelos Biológicos , Linhagem Celular Tumoral , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Software
11.
Artigo em Inglês | MEDLINE | ID: mdl-32596214

RESUMO

It is a hot topic to improve efficiency and decrease toxicity of gene transfection reagents. The extracellular nanovesicles (EVs) that are released by cells play an important role in intercellular communication and are naturally designed for genetic exchange between cells. Here, we show that the EVs have a large beneficial effect in polyethyleneimine (PEI)-mediated transfection of a GFP-encoding plasmid into HEK293T cells. An improvement of transfection efficiency of ~500% and a decrease in toxicity were observed in a specific concentration range of PEI. The EVs also greatly improved the transfection of the same plasmid into zebrafish embryos. To verify the generality of this gene transfection approach, we also tested the cell viability and gene transfection efficiency using two other plasmids (EpTEN and ELuc) and in another cell line (A549). The measured increase in transfection efficiency makes EV a promising candidate for enhancement of the quality of current PEI-based transfection technique.

12.
Biosci Rep ; 40(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32395744

RESUMO

Matrine is a main active constituent of Chinese herb Sophora flavescens Ait (Kushen), which has shown various pharmacological effects, and has been reported to exhibit protective effects in heart failure. In the present study, the underlying mechanism of matrine was explored in H2O2-induced H9c2 cell line. It was confirmed that matrine could alleviate H2O2-induced injury in H9c2 cells. And the down-regulation of long non-coding RNA HOTAIR induced by H2O2 could be reversed by treating with matrine. Moreover, overexpression of HOTAIR promoted cell viability and superoxide dismutase (SOD) level, but inhibited cell apoptosis and lactate dehydrogenase (LDH) level. We found that miR-106b-5p was a target of HOTAIR and negatively regulated by HOTAIR. Moreover, up-regulation of miR-106b-5p restored the effects of HOTAIR overexpression on cell viability, apoptosis, and the levels of LDH and SOD. In addition, matrine protected H9c2 cells from H2O2-induced injury through HOTAIR/miR-106b-5p axis. Furthermore, we discovered that matrine exerted protective effects on H2O2-induced H9c2 cells through activating STAT3 and AKT pathway. In brief, matrine modulated H2O2-induced myocardial oxidative stress repair through HOTAIR/miR-106b-5p axis via AKT and STAT3 signaling pathway. Our study may provide a therapeutic target for the therapy of oxidative stress heart diseases.


Assuntos
Alcaloides/farmacologia , Peróxido de Hidrogênio/farmacologia , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/farmacologia , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , MicroRNAs/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , Ratos , Transdução de Sinais , Matrinas
13.
Oxid Med Cell Longev ; 2019: 7954657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885817

RESUMO

BACKGROUND/AIMS: Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. Recently, exosomes from cardiomyocytes (CMs) have been found to facilitate cell proliferation and survival by transporting various bioactive molecules, including circRNA. However, the functions of exosomal circRNAs are not clear. The present research is aimed at determining whether circHIPK3 released from hypoxia-pretreated CMs is transferred into cardiac microvascular endothelial cells (CMVECs) by exosomes and becomes functionally active in the CMVECs under oxidative stress conditions. METHODS: Quantitative polymerase chain reactions were conducted to detect the expression pattern of circHIPK3 in CMVECs under oxidative stress. Annexin V-FITC/propidium iodide (PI) staining assays, TUNEL assays, ROS assays, and Western blot analysis were conducted to detect the role of exosomal circHIPK3 in CMVEC function in vitro. Luciferase activity assays and RNA immunoprecipitation studies were conducted in vitro to reveal the mechanism of circHIPK3-mediated CMVEC function. RESULTS: circHIPK3 expression was significantly upregulated in hypoxic exosomes (HPC-exos) compared with normoxic exosomes (Nor-exos). Moreover, HPC-exos induced stronger antioxidant effects than Nor-exos. The silencing or overexpression of circHIPK3 changed CMVEC survival under oxidative conditions in vitro. Furthermore, circHIPK3 silencing in HPC-exos abrogated the protective effects of HPC-exos in CMVECs, as shown by increased levels of apoptosis, ROS, MDA, and proapoptotic proteins. circHIPK3 acted as an endogenous miR-29a sponge to sequester and inhibit miR-29a activity, which led to increased IGF-1 expression. The ectopic expression of miR-29a mimicked the effect of circHIPK3 silencing in CMVECs in vitro. CONCLUSIONS: circHIPK3 in HPC-exos plays a role in CMVECs under oxidative conditions through miR-29a-mediated IGF-1 expression, leading to a decrease in oxidative stress-induced CMVECs dysfunction. These data suggest that the exosomal circRNA in CMs is a potential target to control CMVECs dysfunction under oxidative conditions.


Assuntos
Vasos Coronários/patologia , Endotélio Vascular/metabolismo , Exossomos/metabolismo , Hipóxia/genética , Microvasos/patologia , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Endotélio Vascular/patologia , Feminino , Hipóxia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/patologia , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/genética , RNA Circular/genética , Transdução de Sinais
14.
Biomed Res Int ; 2019: 6131879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223620

RESUMO

RAW264.7 is a macrophage strain derived from mice tumour and shows a significant ability in antigen uptake. Real-time quantitative PCR (RT-qPCR) is one of the most commonly used methods in gene studies and requires suitable reference genes to normalize and quantitate the expression of gene of interest with sensitivity and specificity. However, suitable reference genes in RAW264.7 cells have not yet been identified for accurate gene expression quantification. In the current study, we evaluated expression levels of ten candidate reference genes in RAW264.7 cells under different conditions. RT-qPCR results indicated significant differences in the expression levels among the ten reference genes. Statistical analyses were carried out using geNorm, NormFinder, and BestKeeper software to further investigate the stability of the reference genes. Integrating the results from the three analytical methods, cytochrome c-1 and hydroxymethylbilane synthase were found to be the most stable and therefore more suitable reference genes, while ribosomal protein L4 and cyclophilin A were the least stable. This study emphasises the importance of identifying and selecting the most stable reference genes for normalization and provides a basis for future gene expression studies using RAW264.7 cells.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/normas , Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/normas , Animais , Camundongos , Células RAW 264.7 , Padrões de Referência , Software
15.
Phytochemistry ; 164: 1-11, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31054374

RESUMO

Real time quantitative reverse transcription PCR (RT-qPCR) has been attracting more attention for its high sensitivity in gene expression analysis. Given the widely use of RT-qPCR in normalization, it is playing a pivotal role for seeking suitable reference genes in different species. In current work, 12 candidate reference genes including Actin 2 (ACT2), Cyclophilin 2 (CYP2), Glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2), Elongation factor 1-α (EF1-α), Nuclear cap binding protein 20 (NCBP20), Serine/threonine-protein phosphatase PP2A (PP2A), Polypyrimidine tract-binding protein 1 (PTBP1), SAND family protein (SNAD), TIP41-like protein (TIP41), Tubulin beta-6 (TUB6), Ubiquitin-conjugating enzyme 9 (UBC9) and Glyceraldehyde-3-phosphatedehydrogenase (GAPDH) were screened from the transcriptome datasets of M. charantia. Afterwards, GeNorm, NormFinder and BestKeeper algorithms were applied to assess the expression stability of these 12 genes under different abiotic stresses including drought, cold, high-salt, hormone, UV, oxidative and metal stress. The results indicated that 12 selected genes exhibited various stability across the samples under different external stress conditions, but TIP41, PTBP1 and PP2A presented high stability among all the reference genes. To validate the suitability of the identified reference genes, the results of hormone subset were compared with RNA sequencing (RNA-seq) data, and the relative abundance of Ascorbate peroxidase 1(APX1)was used to confirm the reliability of the results. This work assesses the stability of reference genes in M. charantia under different abiotic stress conditions, which will be beneficent for accurate normalization of target genes in M. charantia.


Assuntos
Momordica charantia/genética , Reação em Cadeia da Polimerase em Tempo Real , Perfilação da Expressão Gênica , Momordica charantia/crescimento & desenvolvimento
16.
Ecotoxicol Environ Saf ; 176: 279-287, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30947031

RESUMO

2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) are two typical polybrominated diphenyl ethers (PBDEs), and studies have proven that these PBDs can disrupt the behaviors and physical function of aquatic organisms. However, little is known about the compositional impacts of BDE-47/BDE-99 compound pollution on the feeding behavior of Daphnia magna. In this study, a response surface methodology (RSM) was introduced into the combined toxicity assessment of BDE-47 and BDE-99 on the feeding depression of D. magna. Low concentrations of BDE-47 (9.2 µg/L) and BDE-99 (5.4 µg/L) had no effect on the feeding behavior of D. magna; nevertheless, the feeding depression was strengthened, and a concentration-dependent effect was observed with increasing concentrations of BDE-47 and BDE-99. The results of RSM indicated that the mixture of BDE-47 and BDE-99 can enhance their toxicity on the feeding behavior of D. magna. Moreover, real-time PCR (qPCR) analysis showed that the down-regulation of α-amylase (AMS) appeared in most of the exposed D. magna. However, there were significant different in the gene expression of trypsin, superoxide dismutase (SOD) and catalase (CAT) between the exposure and control groups. The change in the enzyme activity of AMS, trypsin, SOD and CAT implied that BDE-47 and BDE-99 cause damage to the digestive and antioxidative systems of D. magna. Correlation analysis indicated that a significant positive correlation existed between the gene expression and enzyme activity of SOD and CAT. Our results contribute to the understanding of toxicity caused by BDE-47/BDE-99 compound pollution in D. magna and help to improve traditional toxicity assessment methods for aquatic environments.


Assuntos
Antioxidantes/metabolismo , Daphnia/efeitos dos fármacos , Digestão/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/genética , Daphnia/enzimologia , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Superóxido Dismutase/genética
17.
Appl Microbiol Biotechnol ; 103(3): 1351-1362, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610282

RESUMO

The Ser/Thr protein phosphatase Ppt1 (yeast)/PP5 (humans) has been implicated in signal transduction-mediated growth and differentiation, DNA damage/repair, cell cycle progression, and heat shock responses. Little, however, is known concerning the functions of Ppt1/PP5 in filamentous fungi. In this study, the Ppt1 gene MaPpt1 was characterized in the insect pathogenic fungus, Metarhizium acridum. The MaPpt1 protein features a three-tandem tetratricopeptide repeat (TPR) domain and a peptidyl-prolyl cis-trans isomerase-like (PP2Ac) domain. Subcellular localization using an MaPpt1::eGFP fusion protein revealed that MaPpt1 was localized in the cytoplasm of spores, but gathered at the septa in growing hyphae. Targeted gene inactivation of MaPpt1 in M. acridum resulted in unexpected reprogramming of normal aerial conidiation to microcycle conidiation. Although overall vegetative growth was unaffected, a significant increase in conidial yield was noted in ΔMaPpt1. Stress-responsive phenotypes and virulence were largely unaffected in ΔMaPpt1. Exceptionally, ΔMaPpt1 displayed increased UV tolerance compared to wild type. Digital gene expression data revealed that MaPpt1 mediates transcription of sets of genes involved in conidiation, polarized growth, cell cycle, cell proliferation, DNA replication and repair, and some important signaling pathways. These data indicate a unique role for Ppt1 in filamentous fungal development and differentiation.


Assuntos
Metarhizium/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Proliferação de Células/genética , Reparo do DNA/genética , Replicação do DNA/genética , Deleção de Genes , Metarhizium/metabolismo , Transdução de Sinais/genética , Raios Ultravioleta
18.
Front Physiol ; 10: 1625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082182

RESUMO

Heart failure (HF) has been proposed as a potential indication of renal denervation (RDN). However, the mechanisms enabling RDN to attenuate HF are not well understood, especially the central effects of RDN. The aim of this study was to decipher the mode of operation of RDN in the treatment of HF using a canine model of right ventricular rapid pacing-induced HF. Accordingly, 24 Chinese Kunming dogs were randomly grouped to receive sham procedure (sham-operated group), bilateral RDN (RDN group), rapid pacing to induce HF (HF-control group), and bilateral RDN plus rapid pacing (RDN + HF group). Echocardiography, plasma brain natriuretic peptide (BNP), and norepinephrine (NE) concentrations of randomized dogs were measured at baseline and 4 weeks after interventions, followed by histological and molecular analyses. Twenty dogs completed the research successfully and were enrolled for data analyses. Results showed that the average optical density of renal efferent and afferent nerves were significantly lower in the RDN and RDN + HF groups than in the sham-operated group, with a significant reduction of renal NE concentration. Rapid pacing in the RDN + HF and HF-control groups, compared with the sham-operated group, induced a significant increase in left ventricular end-diastolic volume and decrease in left ventricular ejection fraction and correspondingly resulted in cardiac fibrosis and dysfunction. Cardiac fibrosis evaluated by Masson's trichrome staining and the expression of transforming growth factor-ß1 (TGF-ß1) were significantly higher in the HF-control group than in the sham-operated group, which were remarkably attenuated by the application of the RDN technique in the RDN + HF group. In terms of central renin-angiotensin system (RAS), the expression of angiotensin II (AngII)/angiotensin-converting enzyme (ACE)/AngII type 1 receptor (AT1R) in the hypothalamus of dogs in the HF-control group, compared with the sham-operated group, was upregulated and that of the angiotensin-(1-7) [Ang-(1-7)]/ACE2 was downregulated. Furthermore, both of them were significantly attenuated by the RDN therapy in the RDN + HF group. In conclusion, the RDN technique could damage renal nerves and suppress the cardiac remodeling procedure in canine with HF while concomitantly attenuating the overactivity of central RAS in the hypothalamus.

19.
Beilstein J Org Chem ; 14: 2090-2097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202462

RESUMO

A cobalt-catalyzed C(sp2)-H alkoxylation of 1-naphthylamine derivatives has been disclosed, which represents an efficient approach to synthesize aryl ethers with broad functional group tolerance. It is noteworthy that secondary alcohols, such as hexafluoroisopropanol, isopropanol, isobutanol, and isopentanol, were well tolerated under the current catalytic system. Moreover, a series of biologically relevant fluorine-aryl ethers were easily obtained under mild reaction conditions after the removal of the directing group.

20.
PLoS One ; 13(2): e0191616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444190

RESUMO

Stem cell (SC) therapy for ischemic cardiomyopathy is hampered by poor survival of the implanted cells. Recently, SC-derived exosomes have been shown to facilitate cell proliferation and survival by transporting various proteins and non-coding RNAs (such as microRNAs and lncRNAs). In this study, miR-21 was highly enriched in exosomes derived from bone marrow mesenchymal stem cells (MSCs). Interestingly, exosomes collected from hydrogen peroxide (H2O2)-treated MSCs (H-Exo) contained higher levels of miR-21 than exosomes released from MSCs under normal conditions (N-Exo). The pre-treatment of C-kit+ cardiac stem cells (CSCs) with H-Exos resulted in significantly increased levels of miR-21 and phosphor-Akt (pAkt) and decreased levels of PTEN, which is a known target of miR-21. AnnexinV-FITC/PI analysis further demonstrated that the degree of oxidative stress-induced apoptosis was markedly lower in H-Exo-treated C-kit+ CSCs than that in N-Exo-treated cells. These protective effects could be blocked by both a miR-21 inhibitor and the PI3K/Akt inhibitor LY294002. Therefore, exosomal miR-21 derived from H2O2-treated MSCs could be transported to C-kit+ cardiac stem cells to functionally inhibit PTEN expression, thereby activating PI3K/AKT signaling and leading to protection against oxidative stress-triggered cell death. Thus, exosomes derived from MSCs could be used as a new therapeutic vehicle to facilitate C-kit+ CSC therapies in the ischemic myocardium.


Assuntos
Células da Medula Óssea/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Miocárdio/citologia , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Apoptose , Células Cultivadas , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...